A Global Portrait of the Mn Industry –
A Socio-economic Perspective

Manganese Showcase Symposium
Ottawa, 14th October 2015

Meg Postle
Director, Risk & Policy Analysts Ltd, UK

Introduction

- First global study on the socio-economic importance of the production and downstream uses of Mn
 - Contribution of Mn related activities/use
- One of the first such SEAs for metals
- Work first commissioned by the IMnI in 2012 and carried out in phases
 - First phase developed data on the economic importance of MN
 - Second phase looked at a range of downstream uses, provision of a more regional analysis, and case studies highlighting social expenditure, etc.
- Audience includes IMnI members, national governments, regulators (as part of regulatory defense)
The aim of the study is to develop socio-economic data illustrating the economic importance of inorganic Mn. The study focuses on the use of Mn in various downstream applications.

Focus of the study

In addition to Mn ore and Mn alloy, the study also considered the use of Mn in various downstream applications:

Steel
- Carbon Steel
- Advanced High Strength Steel
- Construction & Engineering Steel
- Austenitic Mn Steel
- Stainless Steel
- HSLA Steel

Other Applications
- Agriculture
- Batteries
- Healthcare
- Aluminium
- Slags & Cement
- Electronics
- Water
Main limitations

- Not all impacts have been quantified
 - Economic value of slags not included
 - Distributors/traders not covered
- Some impacts may not be captured in the right location (e.g. due to trade flows)
- Generic/average multipliers have been used
 - E.g. multipliers for ores based on “Mining and quarrying”
- Estimates are conservative
- Uncertainty due to variations in production efficiencies, use of forecasts, etc.

Mn Ore – Contribution to GDP
Total value (direct & indirect): US$ 21* – 23 billion

*Graph shows our conservative estimate

80% of total economic contribution of Mn ore
Mn Ore – Contribution to GDP
Total value (direct & indirect): US$ 21* – 23 billion

Mn Ore – Employment
Total employment (direct, indirect & induced)
77,000* – 136,600 workers
Mn Ore – Wages from direct employment

Total
US$ 2.7 billion to US$ 4.6 billion

- China: 43% - 51%
- Australia: 16% - 19%
- South Africa: 15% - 17%
- Others: 18% - 21%

Mn Alloy – Contribution to GDP

Total value (direct & indirect): US$ 146 billion

- China: 75%
- India: 8%
- South Korea: 3%
- Ukraine: 2%
- Others: 10%
- S. Africa: 7%
Mn Alloy – Employment

<table>
<thead>
<tr>
<th>Jobs Type</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct Jobs</td>
<td>67,000 to 86,000</td>
</tr>
<tr>
<td>Indirect Jobs</td>
<td>202,000 to 258,000</td>
</tr>
<tr>
<td>Induced Jobs</td>
<td>15,000 to 22,000</td>
</tr>
<tr>
<td>Total Jobs</td>
<td>284,000 to 366,000</td>
</tr>
</tbody>
</table>

Mn in Steel – Economic Benefits

- In its use as an **alloying material**, there are **no known alternatives** to Mn in the steel making process — critical.
- Mn is basically the most **cost-effective** hardenability intensifier and this is the reason it is used in all standard treatable steels — Nickel is more powerful but more expensive.
- The low price of Mn and the cumulative technical benefits mean that there would be additional costs across the value chain in the event of substitution.
- If No Mn = No steel, then **entire value is Mn dependent**.

Steel industry value in 2013

US$ 964 – 1,446 billion
High Strength Low Alloy (HSLA) Steels

• Mn is critical in steels where high yield strengths are required
• HSLA steels offer a high strength to weight ratio, resulting in:
 – reduction in the quantity of steel required
 – reduction in the weight of the final construction (20-30%)
 – reduction in shipping and transport costs
 – reduction in fabrication costs
 – greater design flexibility, etc.
• There are no alternatives to Mn in HSLA steels — alternative steels may be used, but they do not offer the same benefits
• 7% of global steel - uses include offshore & automotive

Advanced High Strength Steels (AHSS)

• AHSS provide excellent ductility and strength when compared to conventional steels – high energy absorption and fatigue endurance limit
• In automotive applications this can lead to weight reduction, lower fuel consumption, lower associated emissions and improved crashworthiness
• Use of AHSS in motor vehicles could lead to global savings of between 8 and 28 million Mt of CO₂ per year and total global fuel cost saving of ~ US$ 435 - 1,400 billion per year
• Such steels account for around 8% of total Mn consumed in steel (but only around 1% of annual steel production)
Stainless Steel

- Mn is a key component of low-cost stainless steel formulations, notably S200-series stainless steel (21% of all stainless)
- The market for S200 steel is valued at around **US$ 13 billion per year** and could reach **US$ 18.7 billion - 35.7 billion by 2020**
- This niche market would not exist without Mn

Mn in Aluminium Beverage Cans

- Mn is present in almost all aluminium alloys and is the main alloying element used in 3XXX series aluminium alloys – used for beverage cans
- In 2011, ~254 billion beverage cans were manufactured, ~90% were made from aluminium
- Assuming a market value of US 0.01 to US$ 0.05 per unit, the total value of the aluminium beverage can market in 2011 was **US$ 2.5 billion to US$ 12.7 billion**
- Given a market growth rate of 2.4%, the global market for aluminium beverage cans could be worth **US$ 11 billion to US$ 22 billion by 2020**
Mn in Aluminium Beverage Cans (USA)

• The USA is the largest single market for beverage cans, accounting for ~43% of the global market (~109 billion cans in 2011)
• We estimate that in 2011:
 – Around **138,000 people** were employed as a result of aluminium beverage can manufacture in the USA
 – **Total wages = US$ 7.9 billion** (direct, indirect, induced)
 – The aluminium beverage can industry was responsible for as much as **US$ 16.4 billion in total economic activity** throughout the economy of the USA
 – Total **tax revenues** related to aluminium beverage can production = **US$ 1.5 billion** in the USA

Mn in Agriculture

• Mn is a trace mineral that is essential for the metabolism of all living organisms (plants and animals)
• Mn deficiency is common in the soils of many locations globally
 – In Northern Indiana (USA), Mn deficiency could lead to annual losses for soybean producers of between **US$ 196 million and US$ 392 million per year** if Mn-containing fertiliser is not applied
 – In the UK and Ireland, the total benefit of treatment for Mn deficiency in soils growing winter wheat and barley is estimated at ~ **US$ 370 million to US$ 667 million per year**
Healthcare

• Stainless steels account for more than half of the total biomedical metals market - an estimated **US$ 6.7 billion** in 2012
• The global market for biomedical metals is expected to increase by 7.5% annually over the coming years

Mn Slags and Cement

• Cement production accounts for ~5% of global anthropogenic CO$_2$ emissions
• Around 65% of the fuel used in cement production is used in the calcination phase (Carbon Enterprises, 2013)
• Because SiMn slag is precalcined, its use in cement production means that less fuel needs to be burned, which results in CO$_2$ emissions reductions
• Assuming just 1% of clinker produced worldwide in 2012 was made using SiMn slag, the total (global) value of CO$_2$ reductions would be ~ **US$ 5.94 million to US$ 29.16 million**
Conclusion

“The mining of Mn ore and production of Mn ferroalloys make significant economic and social contributions to national and regional economies where these activities take place. Mn is also a critical element with a range of downstream applications”

Conclusions

If Mn could no longer be used?

• Currently no known alternative in steel making.....
• Loss of potential for adopting steel technologies that have the potential to reduce energy consumption and hence CO₂ and other atmospheric emissions
• Impact on uses such as aluminium beverage cans, stainless 200 series, agriculture and fisheries
• Increased costs with use of substitutes across a range of other applications
 – Austenitic or Hadfield steels
 – Electronic applications of manganese ferrite
 – Healthcare applications
 – Batteries
THE END

Thank you for listening!

For more details contact:
Risk & Policy Analysts Ltd
Farthing Green House
1 Beccles Road, Loddon
Norfolk, NR14 6LT
+44-1508-528465